QP CODE: 20448

(2¹/₂ Hours) Marks: 75

NB: (1) All questions are compulsory.

- (2) **Figures** to the **right** indicate full **marks**.
- (3) Use of log tables/ non-programmable calculator is allowed
- 1. Physical constants

N_A	=	$6.022 \text{ x} 10^{23} \text{ mol}^{-1}$	1 amu	\$ \	1.66 x10 ⁻²⁷ kg
F	=	96500 C	2.303 RT		0.0592 at
			S P		298 K
R	=	8.314 JK ⁻¹ mol ⁻¹		V 0	
C	=	$3 \times 10^8 \text{ m s}^{-1}$	$\sqrt{\pi}$		3.142
k	=	1.38 x10 ⁻²³ K ⁻¹	h		$6.626 \times 10^{-34} \text{ Js}$
Н	=	1 amu	Br		80 amu
C	=	10 amu		/ 2	10 amu

- 1. Attempt **any three** of the following:
 - (A) Define dipole moment. Explain with the help of suitable examples, how it is used to differentiate (i) cis and trans isomers (ii) O, m and P isomers
 - (B) Justify the statement "The vibration of CO₂ which are Raman active are IR inactive and vice-versa".
 - (C) Derive an expression for wave number of R-branch lines in vibrational rotational spectra. Mention the transitions that give rise to R_0 , R_1 , R_2 and R_3 lines in the spectrum, also qualitatively sketch them.
 - (D) Explain (i) Raman Shift (ii) Stoke's lines (iii) Antistokes lines (iv) Rayleigh scattering. 5
 - (E) In the IR spectrum of HBr, the absorption maxima was observed at 37.6 nm. 5 Calculate the force constant of the bond between HBr.
 - (F) The frequency difference between successive lines in the rotational spectra is 2.12 x 10² m⁻¹ for a diatomic molecule as a perfect rotor. Calculate rotational constant, moment of inertia and frequency of first and second absorption in m⁻¹ for the molecule.

[TURN OVER

5

5

3

2

5

5

- 2. Attempt **any three** of the following:
 - (A) Answer the following with respect to given ion specific electrodes.
 - (a) $\operatorname{Ag-}_{(s)}\operatorname{AgCl}_{(s)}|\operatorname{Cl-}_{(aq)}$
- (b) $Pt | Fe^{2^+}, Fe_{aq}^{3+}$
- (i) Classify the electrode (ii) Write the electrode reaction
- (iii) Say, which ion it is reversible to?
- (iv) Write the expression for the single electrode potential.
- (B) Device and derive an expression for emf of electrolyte concentration cell with- 5 out transference reversible to anion.
- (C) Derive an expression for emf of following cell

$$\begin{array}{c} { \bigcirc } \\ \text{Pt} \, | \, \mathbf{H}_{2(\mathbf{g})} \, | \, \mathbf{HCl} \, | \, \mathbf{HCl} \, | \, \mathbf{H}_{2(\mathbf{g})} \, | \, \mathbf{Pt}^{\oplus} \\ \\ \text{1atm} \quad a_1 \quad a_2 \quad \text{1atm} \end{array}$$

- (D) Answer the following:
 - (i) Distinguish between chemical and concentration cells.
 - (ii) Derive expression for activity of Al₂ (SO_4)₃
- (E) Calculate the mean activity coefficient of 0.01m NaCl in 0.001m Na₂SO₄ 5 (A = 0.509 at 298K for water)
- (F) The emf of the cell $Pt \mid H_{2(g)}, H_2SO_4 \mid H_2SO_4, H_{2(g)} \mid Pt$ $1atm \quad m = 0.01 \quad m = 1.0 \quad 1atm$

0.060 V at 298 K. Calculate the transport numbers of both the ions under transfer of 1 Faraday.

- 3. Attempt any three of the following:
 - (A) Derive the integrated form of Clapeyron-Clausius equation.

 $\gamma = 0.320 \quad \gamma = 0.25$

(B) A solutions containing 0.512 g of solute 'A' (mol.wt =128) in 50g of carbon 5 terta chloride shows boiling point elevation of 0.402K. Another solution of 0.622 g of solute 'B' in the same weight of solvent gives a boiling point elevation of 0.647 K. Find the molecular weight of the solute B.

TURN OVER

	(C)	Derive thermodynamically the relationship between the boiling point elevation of a solution and the mole fraction of the dissolved solute.	5
	(-)		27. 29.
	(D)	Explain the phase diagram of lead-silver system.	5
	(E)	Answer the following with respect to sulphur system.	S. C.
		(i) Draw the phase diagram and identify the curves, area and triple points.	3
		(ii) Apply the phase rule to the area and triple points.	2
	(F)	Draw and explain the phase diagram for a mixture of three liquids, one pair of	5
		which is partially miscible.	
4.	Attempt	any three of the following:	
	(A)	Give the postutates of BET equation. State the equation and identify the terms	5
		involved in it.	
	(B)	Differentiate between physical adsorption and chemical adsorption.	5
	(C)	The adsorption coefficient of a gas according to Langmuir adsorption isotherm	5
		is 0.85 kPa ⁻¹ . Calculate the pressure (kPa) required for 15% coverage.	
	(D)	For a general acid catalysed reaction show that rate of reaction is directly pro-	5
	9 ^V V	portional to the concentration of the acid catalyst.	
	(E)	What is meant by electro-osmosis? Explain how the phenomenon of electro-	5
		osmosis can be observed experimentally.	
	(F)	Prove "The distribution of diffusible ions across a semipermeable membrane	5
		is affected by presence of non-diffusible ion"	
5 . 7	Answer	the following:	
	(A)	State whether the following statement is True or False.	4
8		(a) Rotational spectra is not observed for homopolar molecules.	
A C		(b) Greater the value of force constant greater is the bond length	
A C		(c) The O-D bond absorbs at a lower frequency as compared to O-H bond.	
	15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(d) Water is used as solvent to obtain IR spectra because it does not show	
34		absorption in IR region.	
Y P		OR	
	17 N' A V A 18' (METATOLISM STATE	

[TURN OVER

4

4

(A) Match the following columns.

\mathbf{A}	B
Molecules	Vibrational Degree of freedom
NH_3	
HCl	\$1.4599966888777X
C_2H_2	£££\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
H.S	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

- (B) State whether the following statement is True or False.
 - The net electrical work done by a cell is characterised by increase in free energy.
 - The single electrode potential depends on temperature of the system. (b)
 - In galvanic cells oxidation takes place at cathode. (c)
 - Activities of pure solids, insoluble solids and pure gas under unit (d) atmosphere pressure are taken as unity.

- (B) Choose the correct answer:
 - The electrode Pb_(s)-PbSO_{4(s)} | SO²-4 au
 - Reversible to cation (ii) Reversible to anion
 - (iii) Reversible to cation as well as anion.
 - (q) Pt, $H_2(g)$ HCl AgCl $_{(s)}$ Ag $_{(s)}$

The above cell is

- Chemical cell without transference
- (ii) Concentration cell
- (iii) Chemical cell with transference.
- The reduction potential for $Zn|Zn^{2+}$ a = 0.001 m

$$E^0_{\text{zn/zn}2+} = -0.76 \text{ v is}$$

0.671 V (ii) -0.671 V

- (i)
- -0.671 V
- (iii) -0.848 V

- Salt bridge is used to
 - (i) Eliminate junction potential
 - (ii) Connect two half cells electrolytically
 - (iii) Both i and ii are true

TURN OVER

TURN OVER

3

- (D) State whether the following statement is True or False.
 - (p) Fog is a colloidal system of liquid in gas
 - (q) Catalyst can initiate a reaction.
 - (r) k_{m} is Michealis constant in enzyme catalysis.

-----**